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The spatial distribution of a natural resource is an important consideration in designing an ef� cient survey or monitoring program for the
resource. Generally, sample sites that are spatially balanced, that is, more or less evenly dispersed over the extent of the resource, are more
ef� cient than simple random sampling. We review a uni� ed strategy for selecting spatially balanced probability samples of natural resources.
The technique is based on creating a function that maps two-dimensional space into one-dimensional space, thereby de� ning an ordered
spatial address. We use a restricted randomization to randomly order the addresses, so that systematic sampling along the randomly ordered
linear structure results in a spatially well-balanced random sample. Variable inclusion probability, proportional to an arbitrary positive
ancillary variable, is easily accommodated. The basic technique selects points in a two-dimensional continuum, but is also applicable to
sampling � nite populations or one-dimensional continua embedded in two-dimensional space. An extension of the basic technique gives
a way to order the sample points so that any set of consecutively numbered points is in itself a spatially well-balanced sample. This latter
property is extremely useful in adjusting the sample for the frame imperfections common in environmental sampling.

KEY WORDS: Environmental sampling; Imperfect sampling frame; Monitoring; Non-response; Spatial sampling; Survey design; Sys-
tematic sampling.

1. INTRODUCTION

Environmental studies invariably involve populations dis-
tributed over space. Traditionally, such studies tended to fo-
cus on relatively small and well-delimited systems. However,
some of the environmental issues that we face today, such
as global warming, long-range transport of atmospheric pol-
lutants, or habitat alteration, are not localized. Understanding
and quantifying the extent of symptoms of widespread concern
requires large-scale study efforts, which in turn needs environ-
mental sampling techniques and methodology that are formu-
lated to address regional, continental, and global environmental
issues. Stehman and Overton (1994) gave an overview of some
statistical issues associated with environmental sampling and
monitoring, and Gilbert (1987) gave an extensive discussion of
sampling methods for monitoring environmental pollution.

Several generic situations arise when sampling environmen-
tal resources spread over large spatial extents. Many resource
populations may be represented as collections of points, lines,
or areas; that is, as zero-, one-, or two-dimensional objects.
For sampling purposes, the major distinctions occur between
� nite (pointlike, zero-dimensional), linear (one-dimensional),
and areal (two-dimensional)populations.Finite populationsare
those with discrete, identi� ably distinct units that occupy � xed
locations within a bounded area. Examples are studies of the
basal area of trees within a forest and the eutrophication status
of lakes within the United States. Treating the lakes as points
in a two-dimensional domain is appropriate if the purpose of
the sample is to determine an attribute of each sampled lake
and estimate characteristics of the lake population. The point
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associated with a lake could be any uniquely de� ned location
in the lake, for example, the lake centroid. Linear resources are
populations such as streams or rivers that are present only on
a linear network within a bounded area. Attributes are de� ned
at all points of a stream or river network, for example, water
chemistry. Linear resources are often sampled as � nite popula-
tions by breaking them into discrete units; say by taking � xed-
length intervals beginning at the mouth, headwaters, or domain
boundary. The division into units is often arbitrary, because the
resource does not have well-de� ned natural units. Such a dis-
cretization ignores the essential nature of linear resources as
one-dimensionalcontinuaembedded in two-dimensionalspace.
Conceptualizingthem as linear networks and sampling at points
along the network retains the continuous nature of such popu-
lations. From this viewpoint, the population is an uncountably
in� nite collection of points. An areal resource is a continuous
population that is present everywhere within a bounded area.
Areal resources extend over large regions in a more or less con-
tinuous and connected fashion, although they may comprise
disconnected polygons. As for a linear resource, an areal re-
source does not have distinct natural units and is viewed as an
in� nite point set; for example, all forested land in the United
States, the Puget Sound estuary, and large wetlands such as salt
marshes or the Everglades fall into this category.

A consideration that frequently arises in designing an envi-
ronmental resource sample is that some population elements
are perceived to be more important than others. For example,
in sampling lakes, one might wish to select large lakes with
a greater probability than small lakes because large lakes are
less numerous than small or because they contribute dispro-
portionately to total surface area, total water volume, or total
recreational usage. For a second example, one might wish to
increase the sampling rate for lakes in an arid region of the
population domain to get enough samples to reliably describe
lake characteristics for the region. These two examples illus-
trate two very different scenarios for which variable probability
sampling might be required. In the � rst, the probability varies
elementwise and depends on an attribute (in this case, size) of
the element. In the second case, the probability varies on a ge-
ographical region basis, but may be the same for every element
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within the region. Moreover, the two scenarios can occur in
combination, so that we have a need to conform to both ele-
mentwise and regionwise variation in inclusion probability.

A practical complication frequently encountered in envi-
ronmental sampling is the dif� culty of obtaining an accurate
sampling frame. In many instances, available sampling frames
include a substantial portion of nontarget elements. For exam-
ple, we could use the National Hydrography Dataset (NHD)
available from the U.S. Geological Survey (USGS) as a sample
frame for perennial streams (USGS 1999). Although attributes
within NHD can be used to identify a subset of NHD that more
closely matches the target population of perennial streams, the
subset still includes many ephemeral or intermittent streams,
or long-dry channels, especially in the more arid sections of
the western United States. Another problem is that much of the
resource we might like to sample is inaccessible, because of
physical location, safety, or lack of access permission from the
landowner. In some cases, it is possible to lose 50% or more
of potential sample points because of lack of access. That is,
signi� cant nonresponse can be an issue in environmental sur-
veys. Both problems result in fewer samples being collected
than planned. If estimates of the percentage of the sampling
frame that is nontarget or the percentage of inaccessible sites
are available, then a common practice is to increase the planned
sample size. Our experience is that such estimates are not avail-
able or at best are poorly known.

Some of the attributes of resource populations that in� uence
sampling design are spatial pattern in the measured or observed
response, uneven spatial distributionsof the population,and dif-
� culty in obtaining an adequate frame. Spatial pattern in the
response arises because nearby units interact with one another
and tend to be in� uenced by the same set of natural and an-
thropogenic factors. For example, neighboring trees in a forest
interact by competing for energy and nutrients, and are in� u-
enced by the same set of physical and meteorological condi-
tions, the same level of air- or water-borne pollutants, and the
same set of landscape disturbances. The pattern in the response
may show up either as a gradient or as a mosaic. A number of
studies have concludedthat regularly spaced design points (e.g.,
systematic designs) are optimal for a variety of reasonable spa-
tial correlation functions (see, e.g., Cochran 1946; Quenouille
1949; Das 1950; Matérn 1960; Dalenius, Hájek, and Zubrzycki
1961; Bellhouse 1977; Iachan 1985).

The concept that some degree of spatial regularity should be
used for sampling for environmental populations is well estab-
lished. Accordingly, there are numerous paradigms for incor-
porating the spatial aspect of an environmental population into
a sample. Area sampling partitions the domain of the popula-
tion into polygons, which can be treated either as strata or as
population units themselves. Systematic sampling using a reg-
ular grid is often applied (Bickford et al. 1963; Messer et al.
1986; Hazard and Law 1989), as are several variants that per-
turb the strict alignment (Olea 1984). Spatial strati� cation is
also frequently used, with regular polygons,natural boundaries,
political boundaries, or arbitrary tessellations as strata. Max-
imal strati� cation, that is, one or two points per stratum, has
been viewed as the most ef� cient. To this end, Munhollandand
Borkowski (1996) used a Latin square with a single additional
independent sample to achieve a spatially balanced sample.

Breidt (1995) used a Markov process to generate a one-unit-per-
stratum spatially distributed sample. Both of these techniques
select cells in a regular grid. Another approach is to use space
to order a list frame of the (� nite) population and then use the
order of the list to structure the sample, say, by de� ning strata as
successive segments of the ordered list or by systematic random
sampling. For example, Saalfeld (1991) drew on graph theory
to de� ne a tree that leads to a spatially articulated list frame, and
the National Agricultural Statistics Service has used serpentine
strips (Cotter and Nealon 1987) to order primary sample units
within a state. A related idea that originated in geography is
the general balanced ternary (GBT) spatial addressing scheme
(Gibson and Lucas 1982).The concept behind a GBT address is
related to the concept of space-� lling curves, such as � rst con-
structed by Peano (1890), or the Hilbert curve (Simmons 1963).
Stevens and Olsen (1999) used a similar concept, recursive par-
titioning,togetherwith hierarchical randomization,to distribute
sample points throughspace and time. Wolter and Harter (1990)
used a construction similar to Peano’s to construct a “Peano
key” to maintain the spatial dispersion of a sample as the under-
lying population experiences births or deaths. Saalfeld (1991)
also used the Peano key to maintain spatial dispersion of a sam-
ple.

The foregoing cited methods all do reasonably well at get-
ting a spatially balanced sample under favorable circumstances,
but have dif� culties with some aspect of environmental popu-
lations. For example, spatial strati� cation can be applied to � -
nite, linear, and areal populations. However, de� ning strata for
� nite or linear populations with variable probability and sub-
stantial variation in spatial density can be dif� cult: maximal ef-
� ciency is obtained for one or two samples per stratum. To do
so, we need some means to split the population into spatially
contiguousstrata. We could simply adopt equal-sized strata that
tile the population domain, which usually results in a variable
number of samples per stratum and noninteger expected sam-
ples sizes. (We illustrate this approach in Sec. 3.) Alternatively,
we could try to develop unequal-area strata with the same, or
nearly so, expected number of samples (total inclusion proba-
bility) in each stratum. For a small � nite population, the strata
could be developed by inspection. For a large population, say
the 21,000 lakes in the northeasternUnited States, an automated
strati� cation procedure is necessary. Developing such a proce-
dure is a nontrivial task. Small sample sizes per strata are good
for ef� ciency, but cause the greatest loss of ef� ciency in the
presence of nonresponse. Suppose we have a two-sample-per-
stratum design with a moderate rate of nonresponse, say 25%.
We are almost certain to lose both samples from some strata.
If we replace both sample points, we double the inclusion prob-
ability for those strata. Moreover, it is quite possible that the re-
placement points will also be nonresponse points, so we end up
tripling or quadrupling the inclusion probability. The result is
an unintentionalimbalance in inclusionprobability; those strata
with high nonresponseget less weight in the analysis.Deviation
from the intended inclusion probability that introduces more
variation in the weight of the sample points results in loss of
ef� ciency. Similar arguments can be made for the other meth-
ods for achieving spatial balance.

Sampling the gamut of natural resources requires a tech-
nique that can select a spatially balanced sample of � nite,
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linear, and areal resources with patterned and possibly peri-
odic responses, using arbitrarily variable inclusion probability
with imperfect frame information, in the presence of substan-
tial nonresponse. In the design discussed here, we generalize
the concept of spatial strati� cation to create a very powerful
and � exible technique for selecting a spatially well-distributed
probability sample that works under all of the preceding cir-
cumstances. The technique is based on creating a function
that maps two-dimensional space into one-dimensional space,
thereby de� ning an ordered spatial address. We use a restricted
randomizationcalled hierarchical randomization(HR) (Stevens
and Olsen 2000) to randomly order the address and then ap-
ply a transformation that induces an equiprobable linear struc-
ture. Systematic sampling along the randomly ordered linear
structure is analogous to sampling a random tessellation of
two-dimensional space and results in a spatially well-balanced
random sample. We call the resulting design a generalized
random-tessellation strati� ed (GRTS) design. We develop the
design in a general setting that applies to � nite, linear, and areal
resources, and that accommodates arbitrary inclusion probabil-
ity functions. A particularly favorable feature is that we can dy-
namically add points to the sample as we discover nontarget
or inaccessible points, at the same time maintaining a spatially
well-balanced sample. Features of the design are demonstrated
with a simulation study and are illustrated with an application
to rivers and streams in Indiana.

2. GENERALIZED RANDOM–TESSELLATION
STRATIFIED DESIGN

Before presenting the theoretical development of the GRTS
design, we give a heuristic overview of the process. Assume
that the sample frame consists of N points located within a ge-
ographic region. Assign each point a unit length and place each
point in some order (say randomly) on a line. The line has
length N units. Select a systematic sample of size n from the
line by dividing the line into N=n length intervals, randomly
select a starting point between .0; N=n], say k, and then take
every .k C iN=n/th point for i D 1; : : : ; n ¡ 1. If the point oc-
curs within one of the units, then that unit is selected (Brewer
and Hanif 1983). For a linear resource, use the actual length
of the units to construct the line. For an areal resource, ran-
domly place a systematic grid over the region, randomly se-
lect a point in each grid cell, and then proceed as in the point
case. A GRTS sample results when a process termed hierarchi-
cal randomization is used to place the points on the line. First,
randomly place a 2 £ 2 square grid over the region and place
the cells in random order in a line. For each cell, repeat the
same process, randomly ordering the subcells within each orig-
inal cell. This second step results in 16 cells in a line. Continue
the process until at most one population point occurs in a cell.
Use the random order of the cells to place the points on the line.
This hierarchical randomizationprocess maps two-dimensional
space into one-dimensionalspace while preserving spatial rela-
tionships as much as possible. The combination of hierarchical
randomization to create the line and systematic sampling with
a random start results in a spatially balanced equal probability
sample. Unequal probability sampling is implemented by giv-
ing each point a length proportional to its inclusion probability.

Stevens (1997) derived inclusion and joint inclusion func-
tions for several grid-based designs that were precursors to
GRTS designs and share some of their properties. The de-
signs are all generalizations of the random-tessellation strati-
� ed (RTS) design (Dalenius et al. 1961; Olea 1984; Overton
and Stehman 1993). The RTS design selects random points in
space via a two-step process. First, a regular tessellation co-
herent with a regular grid is randomly located over the do-
main to be sampled, and, second, a random point is selected
within each random tessellation cell. The RTS design is a
variation on a systematic design that avoids the alignment
problems that can occur with a completely regular systematic
design. Like a systematic design, a RTS design does not allow
variable probability spatial sampling. Stevens (1997) intro-
duced the multiple-density, nested, random-tessellation strati-
� ed (MD-NRTS) design to provide for variable spatial sampling
intensity.The geometric conceptunderlyingthe MD-NRTS was
the notion of coherent intensi� cation of a grid, that is, adding
points to a regular grid in such a way as to result in a denser
regular grid with similarly shaped but smaller tessellation cells.
We have since extended the same notion by generalizing to a
process that creates a potentially in� nite series of nested, co-
herent grids. In the limit, the process results in a function that
maps two-dimensional space into one-dimensional space.

We can cover � nite, linear, and areal populations with the
same developmentif we work in the context of general measure
and integration theory. Let R be the domain of the population
we wish to sample, that is, the set of points occupied by ele-
ments of the population.We require that R be a bounded subset
of R2 . Thus, R can be enclosed in a bounded square, so that by
scaling and translation, we can de� ne a 1–1 map from R into
.0;1=2] £ .0;1=2], the lower left quadrant of the unit square.
(We map to the lower left quadrant so that we can add a ran-
dom offset to the image of R and stay within the unit square.
The random offset guarantees that the points from any pair can
end up in different quadrants.) Clearly, every point in the im-
age is associated with a unique point in R and vice versa, so
henceforth, we identify R with its image in the unit square.

2.1 Random Quadrant-Recursive Maps

The heart of the GRTS sample selection method is a function
f that maps the unit square I2 D .0;1]£ .0; 1] onto the unit in-
terval ID .0; 1]. To be useful in achieving a spatially balanced
sample, f must preserve some proximity relationships, so we
need to impose some restrictions on the class of functions to
be considered. Mark (1990), in studying discrete two- to one-
dimensionalmaps, de� ned a property called quadrant recursive,
which required that subquadrants be mapped onto sets of adja-
cent points. To de� ne the continuousanalog, let
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A function f :I2 ! I is quadrant recursive if, for all n ¸ 0,
there is some m 2 f0; 1; : : : ; 4n ¡ 1g such that f .Qn

jk/ D J n
m .
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We can view a quadrant-recursive function as being de� ned
by the limit of successive intensi� cations of a grid covering
the unit square, where a grid cell is divided into four sub-
cells, each of which is subsequently divided into four sub-
subcells, and so on. If we carried this recursion to the limit
and paired grid points with an address based on the order in
which the divisions were carried out, where each digit of the
address represented a step in the subdivision, then we would
obtain a quadrant-recursive function. For example, suppose we
begin with a point at (1, 1), and replace it with four points
p3 D .1;1/, p2 D .1; 1=2/, p1 D .1=2; 1/, and p0 D .1=2;1=2/.
The next step of the recursion replaces each of the � rst four
points p0; : : : ; p3 with pi ¡ f.0; 0/; .0; 1/; .1; 0/; .1; 1/g=22.
Thus the point p2 D .1; 1=2/ is replaced with the four points
p23 D .1; 1=2/, p22 D .1;1=4/, p21 D .3=4; 1=2/, and p20 D
.3=4; 1=4/. The nth step replaces each of the 4n points pi1 i2 ¢¢¢in
with pi1 i2¢¢¢in ¡ f.0; 0/; .0; 1/; .1; 0/; .1; 1/g=2nC1.

A spatially referenced address can be constructed following
the pattern of the partitioning, with each new partition adding
a digit position to the address. Thus, in the preceding exam-
ple, the four points in the � rst group are assigned the addresses
3, 2, 1, and 0, where 3 is the original point at .1;1/. The suc-
cessor points to point 2 get the addresses 23, 22, 21, and 20,
and so forth. The addresses induce a linear ordering of the sub-
quadrants. Moreover, if we carry the process to the limit, and
treat the resulting address as digits in a base-4 fraction [e.g.
treat 22103¢ ¢ ¢ as the base-4 number (.22103¢ ¢ ¢/4], then the
correspondence between grid point and address is a quadrant-
recursive function.

Recursive partitioning generates a nested hierarchy of grid
cells. The derived addressing has the property that all succes-
sor cells of a cell have consecutiveaddresses. Thus, a path from
cell to cell, following the recursive partitioning address order,
will connect all successor cells of cell 0 before reaching any
successor of cell 2 (Fig. 1).

A 1–1 continuous mapping of I2 onto I is not possible, so
quadrant-recursive functions are not continuous.However, they
do have the property that all points in a quadrant are mapped
onto an interval, all points in any one of the four subquadrants
of a quadrant are mapped onto an interval, and so on ad in� ni-
tum. This property tends to preserve proximity relationships,
that is, if s is “close to” t , then f .s/ should “tend to be close to”
f .t/. In Appendix A, we make this statement more precise by
showing that if the origin is located at random and s is chosen
at random from I2 , then limj±j!0 E[jf .s/ ¡ f .s C ±/j] D 0. In-
tuitively, two elements that are close together will tend to fall
in the same randomly located cell of a size that decreases as
the distance between points decreases. Because the two ele-
ments are covered by the same cell, their addresses match to
the level of that cell and thus, in expectation, their addresses
will be close.

A fundamental 1–1 quadrant-recursive map is de� ned by
digit interweaving. Let s D .x; y/ be a point in I2 . Each of the
coordinates has an expansion as a binary fraction of the form
x D :x1x2x3 ¢ ¢ ¢; y D :y1y2y3 ¢ ¢ ¢; where each xi and yi is either
0 or 1. De� ne f0.s/ by alternating successive digits of x and y ,
that is, f0.s/ D :x1y1x2y2 ¢ ¢ ¢: Clearly, f0 would be 1–1 ex-
cept for different expansions of the same number. For example,
.1 and .011111¢ ¢ ¢; where the 1s continue inde� nitely, are two

Figure 1. First Four Levels of a Quadrant-Recursive Partitioning of
the Unit Square. The address associated with the cross-hatched cell
is 213.

representations of the number 1=2. If we always use the binary
representation with an in� nite number of 1s, then f0 is 1–1.
Moreover, every point in I is the image of a point in I2, which
is obtained by “digit splitting.” That is, if t D :t1t2t3 ¢ ¢ ¢ is in I,
then s D f ¡1

0 .t/ D .:t1t3t5 ¢ ¢ ¢; :t2 t4t6 ¢ ¢ ¢/ is the preimage of t .
Both f0 and f ¡1

0 are 1–1 if we always use the representation
with an in� nite number of 1s (Hausdorff 1957, p. 45). To show
that f0 is quadrant recursive, note that for s 2 Qn

jk , the � rst
4n digits of f0.s/ are � xed, so f0.s/ 2 J n

m , where m is de� ned
by the � rst 4n digits. Conversely, the preimages of every t 2 J n

m

have the same � rst 2n digits, and so must be in the same Qn
jk .

Figure 1 shows the � rst four levels of the recursive parti-
tioning of the unit square. The address of the cross-hatched
subquadrant is, as a base-4 fraction, (.213)4 and the associ-
ated grid point is at (3=4, 1=2), the upper right corner of
the subquadrant. Following the convention of having an in-
� nite number of 1s in the expansion, we have .3=4;1=2/ D
.:11; :1/2 D .:1011111 ¢ ¢ ¢; :0111111 ¢ ¢ ¢/2. Digit interweaving
gives the image .:10011111¢ ¢ ¢/2 D .:2133333 ¢ ¢ ¢/4 , of which
the � rst three digits are the subquadrant address. If we carried
the recursive partitioning to the limit, every point in the sub-
quadrant would be assigned an address beginningwith .:213/4.

The class of all quadrant-recursive functions can be gener-
ated from the function f0, which is de� ned by digit interweav-
ing, by permuting the order in which subquadrants Qn

jk are

paired with the intervals J n
m. For example, for n D 1, f0.Q1

jk/ D
J 1

2jCk . We obtain a different quadrant-recursivefunctionby per-
muting the subscripts f0; 1;2; 3g of the image intervals. Thus,
under the permutation ¿ D f2;1; 3;0g, we get a function such
that f¿ .Q1

jk/ D J 1
¿ .2jCk/, so that f¿ .Q1

00/ D J 1
2 , f¿ .Q1

01/ D J 1
1 ,

f¿ .Q1
10/ D J 1

3 , and f¿ .Q1
11/ D J 1

0 . To see that the class of
all quadrant-recursive functions is generated by such permu-
tations, express each number in I as a base-4 number, that



266 Journal of the American Statistical Association, March 2004

is, as t D :t1t2t3 ¢ ¢ ¢, where each digit ti is either a 0, 1, 2,
or 3. A function hp :I ! I is a hierarchical permutation
if hp.t/ D :p1.t1/pt12.t2/pt1 t23.t3/ ¢ ¢ ¢; where pt1 t2¢¢¢tn¡1n.¢/ is
a permutationof f0; 1;2; 3g for each uniquecombinationof dig-
its t1; t2; : : : ; tn¡1. Again, we ensure that hp is 1–1 by always
using the expansion with an in� nite number of nonzero digits.
Any quadrant-recursive function can be expressed as the com-
position of f0 with some hierarchical permutation hp, because
the associations f .Qn

jk/ D J n
m determine the series of permuta-

tions and the permutations de� ne the associations.
If the permutations that de� ne hp.¢/ are chosen at random

and independentlyfrom the set of all possible permutations, we
call hp.¢/ a hierarchical randomization function and call the
process of applying hp.¢/ hierarchical randomization.

2.2 Sample Selection With Probability Proportional to
Arbitrary Intensity Function

We assume that the design speci� cations de� ne a desired
sample intensity function ¼.s/, that is, the number of samples
per unit measure of the population.For example, if the popula-
tion were a stream network, ¼.s/ might specify the number of
samples per kilometer of stream at s. For a discrete population,
¼.s/ has the usual � nite-population-sampling interpretation as
the target inclusion probability of the population unit located
at s. We call ¼.s/ an intensity function, because we have not
yet introduced a probability measure. In Appendix B, we de-
velop the details of a sample selection method that yields an
inclusion-probability function equal to ¼.s/. The concept be-
hind the method is the composition of a hierarchical random-
ization function with a function that assigns to every interval
in f .R/ a weight equal to the total of the intensity function of
its preimage in R. In effect, we stretch the image interval via
a distribution function F , so that its total length is equal to the
sample size M . We pick M points by taking a systematic sam-
ple with a unit separation along the stretched image and we map
these points back into the domain R via the inverse function to
get the sample of the population. We show in Appendix B that
this procedure does indeed give a sample with an inclusion-
probability function equal to the intensity function ¼.s/.

The technique of randomly mapping two-dimensional space
to a line segment, systematically sampling from the range of the
distribution function, and then mapping back to the population
elements always produces a sample with the desired � rst-order
inclusion-probability function as long as f is 1–1 and measur-
able. We required that f be quadrant recursive and claim that
this is suf� cient to give a spatially balanced sample. This claim
follows from the fact that the map f ¡1 ± .F=M/ ± f transforms
the unequal intensity surface de� ned by ¼ into an equiproba-
ble surface. The quadrant-recursive property of f guarantees
that the sample is evenly spread over the equiprobable sur-
face (in the sense that each subquadrant receives its expected

number of samples) to the resolution determined by the sample
size M .

2.3 Reverse Hierarchical Ordering

The sample points selected by mapping the systematic points
along .0; M] back to the population domain will be ordered in
a way that follows the quadrant-recursiveness of f , tempered
by an allowance for unequal probability selection. Thus, the
� rst quarter of the points all will come from the same “quad-
rant” of the equiprobabledomain and all will be approximately
neighbors in the original populationdomain. It follows that four
points, one picked from each quarter of the sample points or-
dered by the systematic selection, will be a spatially balanced
sample. Because the random permutations that de� ne the hier-
archical randomization are selected independently of one an-
other, it makes no difference, from a distributional standpoint,
whether we pick the points systematically from each quarter,
or make random selections from each quarter. Therefore, we
lose no randomness by picking the points that occupy positions
that correspond to being at the beginning,one-quarter, one-half,
and three-quarters of the way through the ordered list of sample
points.

Within each quarter of the list, the points are again quadrant-
recursively ordered, so points picked at the beginning, one-
quarter, one-half, and three-quarters of the way through
each quarter of the list will be spread out over the correspond-
ing quadrant, and so on down through the sequence of sub-
quadrants. We can utilize these properties by reordering the
systematically selected list so that, at any point in the reordered
list, the samples up to that point are well spread out over the
populationdomain.

The order is most convenientlyexpressed in terms of a base-4
fraction, where the fraction expresses the relative position in
the systematically ordered list. Thus, the � rst four points cor-
respond to the fractions .:0; :1; :2; :3/4 D .0; 1=4; 1=2; 3=4/10.
Stepping down a subquadrant level corresponds to adding
a digit position to the base-4 fraction, which we � ll in such
a way as to spread the sequence of points over the population
domain. The pattern for the � rst 16 points is shown in Table 1.
Note that the order corresponds to the ranking obtained by re-
versing the sequence of base-4 digits and treating the reversed
sequence as a base-4 fraction.

We can continue this same pattern of adding digit positions
through as many positions as necessary to order the entire sam-
ple. The resulting order is called reverse hierarchical order.
It remains to show that reverse hierarchical order does indeed
give a spatially well-balanced sample for any m · M . Clearly
this is the case for m D 4k , because the reduced sample can
be viewed as a sample selected from a complete GRTS design.
Stevens (1997) derived an analytic expression for the pairwise
inclusion density for some special intermediate cases. Here, we
investigate the spatial balance properties using simulation.

Table 1. Generation of Reverse Hierarchical Order

Reverse Reverse Reverse Reverse
Order Base 4 base 4 Order Base 4 base 4 Order Base 4 base 4 Order Base 4 base 4

1 .00 .00 5 .01 .10 9 .02 .20 13 .03 .30
2 .10 .01 6 .11 .11 10 .12 .21 14 .13 .31
3 .20 .02 7 .21 .12 11 .22 .22 15 .23 .32
4 .30 .03 8 .31 .13 12 .32 .23 16 .33 .33
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3. SPATIAL PROPERTIES OF GRTS SAMPLE POINTS

In this section, we investigate the spatial balance, or regu-
larity of the sample points produced by a GRTS design. We
noted in the Introduction that, generally, the ef� ciency of an
environmental sample increases as spatial regularity increases.
A design with regularity comparable to a maximally strati� ed
sample should have good ef� ciency. Choosing a suitable sta-
tistic to describe regularity is nontrivial because the popula-
tion domain itself is likely to have some inherent nonregularity
(e.g., variation in spatial density for a � nite or linear popula-
tion) and because of the need to account for variable inclusion
probability. The measure of regularity needs to describe reg-
ularity over the inclusion-probability-weighted irregular pop-
ulation domain. Various statistics to assess the regularity of
a point process have been proposed in the study of stochastic
point processes. One class of descriptive statistics is based on
counts of event points within cells of a regular grid that cov-
ers the process domain. The mean count is a measure of the
process intensity, and the variance of the counts is a measure
of the regularity. The usual point process approach is to invoke
ergodicity and take expectation over a single realization. In the
present case, the expectationshould and can be taken over repli-
cate sample selections.

We illustrate this approach using an arti� cial � nite popula-
tion that consists of 1,000 points in the unit square with a spatial
distribution constructed to have high spatial variability, that is,
to have voids and regions with densely packed points. Variable
probability was introduced by randomly assigning 750 units
a relative weight of 1, 200 units a weight of 2, and 50 units
a weight of 4. The inclusion probability was obtained by scal-
ing the weights to sum to the sample size. We divided the unit

square into 100 square cells with sides .1 units. Fifty-one of the
cells were empty. The expected sample sizes (the sum of the
inclusion probability for each cell) for the 49 nonempty cells
ranged from .037 to 4.111.

We compared the regularity of three sampling designs: in-
dependent random sampling (IRS), spatially strati� ed sampling
(SSS), and GRTS sampling. For each sampling scheme, we se-
lected 1,000 replicates of a sample of 50 points and counted the
number of sample points that fell into each of the 49 nonempty
cells de� ned in the previous paragraph. For the IRS sample, we
used the S-PLUS (Insightful Corporation 2002) “sample” func-
tion with “prob” set to the element inclusion probability.

As we noted in the Introduction,there is no general algorithm
for partitioning an arbitrary � nite spatial population with vari-
able inclusionprobability into spatial strata with equal expected
sample sizes. For this exercise,we chose to use equal-area strata
with variable expected sample sizes. For simplicity, we chose
square strata. We picked a side length and origin so that (1)
the strata were not coherent with the :1 £ :1 cells used for reg-
ularity assessment and (2) about 50 stratum cells had at least
one population point. The strata we used were offset from the
origin by .:03; :03/, with a side length of .095. Exactly 50 strat-
i� cation cells were nonempty,with expected sample sizes rang-
ing from .037 to 4.111. Figure 2 shows the population with the
strati� cation cells overlaid.

We selected the strati� ed sample in two stages. The fractional
parts of the expected sample sizes will always sum to an inte-
ger, in this case, 21. The � rst step in the sample selection was to
select which 21 of the 50 strata would receive an “extra” sample
point. For this step, we again used the S-PLUS “sample” func-
tion, this time with “prob” set to the fractional part of the ex-
pected sample size. The second step in the sample selection was

Figure 2. Finite Population Used in Spatial Balance Investigation, Overlaid With Grid Cells Used for Strati�cation. Cell cross-hatching indicates
the expected sample size in each cell.



268 Journal of the American Statistical Association, March 2004

to pick samples in each of the 50 strata, that had a sample size
equal to the integerpart of the expected sample size, plus 1 if the
stratum was selected in stage 1. Again, the sample was selected
with the “sample” function, this time with “prob” set to the ele-
ment inclusionprobability.This two-stage procedurealways se-
lects exactly 50 samples with the desired inclusion probability.

In Figure 3, we plot the variance of the achieved sample size
in each of the evaluation cells versus the expected sample size,
with lowess � tted lines. Of the three designs, the IRS has the
largest variance and the GRTS has the smallest; the SSS design
is approximatelymidway between. Strati� cation with one sam-
ple per cell would likely have about the same variance as the
GRTS.

Another common way to characterize a one-dimensional
point process is via the interevent distance, for example, the
mean interevent time for a time series measures the intensity of
the process and the variance measures the regularity. An anal-
ogous concept in two-dimensions is that of Voronoi polygons.
For a set of event points fs1; s2; : : : ; sng in a two-dimensional
domain, the Voronoi polygon 9i for the ith point is the collec-
tion of domain points that are closer to si than to any other sj in
the set. Note that in the case of a � nite population, the Voronoi
“polygons”are collectionsof populationpoints, and for a linear
population, they are collections of line segments.

We propose using a statistic based on Voronoi polygons to
describe the regularity of a spatial sample. For the sample S

consisting of the points fs1; s2; : : : ; sng, let ºi D
R

9i
¼.s/ dÁ.s/,

so that vi is the total inclusion probability of the Voronoi poly-
gon for the ith sample point, and set ³ D Var.fºig/. For a � -
nite population with variable inclusion probability, vi is the
sum of the inclusion probability of all population units closer
to the sample point si than to any other sample point. BecauseP

i j9ij D jRj and
R

R
¼.s/ dÁ.s/ D n, E[vi ] D 1. We note that

for an equiprobable sample of a two-dimensionalcontinua, ³ is
equal to the variance of the area of the Voronoi polygons for the
points of S multipliedby the square of the inclusionprobability.

Figure 3. Comparison of the Regularity of GRTS, SSS, and IRS De-
signs. Results are based on the mean of 1,000 samples of size 50. The
achieved sample size is the number of samples that fell into .1 £ .1
square cells that tiled the population domain. Lines were � tted with
lowess. (N generalized random tessellation strati�ed sampling; £ inde-
pendent random sampling; ¦ spatially strati�ed sampling.)

For the kinds of applications that we have in mind, the spa-
tial context of the population is an intrinsic aspect of the sample
selection. For a � nite population, the spatial context simply
comprises the locationsof the populationunits, for a linear pop-
ulation, the spatial context is the network, and for an areal re-
source, the spatial context is described by the boundary of the
resource domain, which may be a series of disconnected poly-
gons. The effect of the interplay of sampling design and spa-
tial context on properties of the sample cannot be ignored. For
small to moderate sample sizes, or for highly irregular domains,
the spatial context can have a substantial impact on the distri-
bution of ³ . Because of the spatial dependence, the derivation
of a closed form for the distribution of ³ does not seem feasi-
ble, even for simple sampling designs such as IRS. However,
for most cases, it should be relatively easy to simulate the dis-
tribution of ³ under IRS to obtain a standard for comparison.
The regularity of a proposed design can then be quanti� ed as
the ratio ³.proposed design/=³.IRS/, where ratios less than 1
indicate more regularity than an IRS design.

We evaluated spatial balance using the ³ ratio under three
scenarios: (1) a variable probability sample from a � nite popu-
lation, (2) an equiprobable point sample from an areal popula-
tion de� ned on the unit square, and (3) an equiprobable point
sample from the same extensive population,but with randomly
located square holes to model nonresponseand imperfect frame
information.

For the � nite population study, we drew 1,000 samples of
size 50 from the previously described � nite population for both
the GRTS and the IRS designs. To illustrate the ability of the
GRTS design to maintain spatial regularity as the sample size
is augmented, we ordered the GRTS points using reverse hi-
erarchical ordering. We then calculated the ³ ratio, beginning
with a size of 10 and adding one point at a time following the
reverse hierarchical order. We also drew 1,000 samples of size
50 using the previously discussed spatial strati� cation. Because
there is no sensible way to add the strati� ed sample points one
at a time, we can compute the ³ ratio only for the complete sam-
ple of 50 points. Figure 4 is a plot of the ³ ratio for GRTS and
IRS versus sample size. The single ³ ratio for SSS(50) is also
shown. For the GRTS design, the ³ ratio has a maximum value
of .587 with 10 samples and gradually tapers off to .420 with
50 samples. Although it would be dif� cult to prove, we sus-
pect that the gradual taper is due to lessening edge effect with
increasing sample size, that is, fewer of the Voronoi polygons
cross the void regions in the population domain. We note that
the valleys in the ³ ratio occur at multiples of 4, with the most
extreme dips occurring at powers of 4. This is a consequence
of quadrant-recursive partitioning: maximum regularity occurs
with one point from each of the four quadrants. We also note
that the SSS(50) value of the ³ ratio is .550 compared to the
correspondingvalue of .420 for the GRTS design. Inasmuch as
the GRTS is analogous to a one-sample-per-stratum SSS, we
would expect the GRTS to be as ef� cient as a maximally ef� -
cient SSS.

For our extensive population study, we selected 1,000 sam-
ples of size M D 256 from the unit square using the GRTS
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Figure 4. The ³ Ratio as a Function of Sample Size Based on 1,000
Replicate Samples From an Arti� cial Finite Population. Sample points
were added one point at a time up to the maximum sample size of 50,
following reverse hierarchical order for the GRTS sample. The ³ ratio for
a spatially strati�ed sample is also indicated on the plot.

design and ordered the samples using the reverse hierarchical
order. As for the � nite populationstudy, we calculated the ³ ra-
tio as the points were added to the sample one at a time, be-
ginning with point number 10. The holes represent nontarget
or access-denied elements that were a priori unknown. Sample
points that fell in the holes were discarded, resulting in a vari-
able number of sample points in the target domain. As for the
complete domain, we ordered the points using reverse hierar-
chical ordering and then calculated the ³ ratio as the points were
added one at a time. Because the sample points that fall into the
nontarget areas contribute to the sample point density but not to
the sample size, the ³ ratio was plotted versus point density.

We used three different distributions of hole size: constant,
linearly increasing, and exponentially increasing. In each case,
the holes comprise 20% of the domain area. Figure 5 shows the

Figure 5. Void Patterns Used to Simulate InaccessiblePopulation El-
ements.

Figure 6. The ³ Ratio as a Function of Point Density Based on 1,000
Replications of a Sample of Size 256 (—— continuous domain with no
voids; ¡ ¡ ¡¡ exponentialy increasing polygon size; - - - - - linearly in-
creasing polygon size; ¢ ¢ ¢—¢ ¢ ¢— constant polygon size).

placementof the holes for each scenario, and Figure 6 shows the
³ ratio for all four scenarios: no voids, exponentiallyincreasing,
linearly increasing, and constant size.

In every scenario, the variance ratio is much less than 1.
Except for small sample sizes, the ratio stays in the range of
.2 to .4. The gradual decrease as the sample size increases is due
to the decreasing impact of the boundary:as the sample size in-
creases, the proportion of polygons that intersect the boundary
decreases. A similar effect is seen with the different inaccessi-
bility scenarios: even though the inaccessible area is constant,
the scenarios with greater perimeter cause more increase in
variance.

4. STATISTICAL PROPERTIES OF GRTS DESIGN

4.1 Estimation

The GRTS design produces a sample with speci� ed � rst-
order inclusion probabilities, so that the Horvitz–Thompson
(Horvitz and Thompson 1952) estimator or its continuouspop-
ulation analog (Cordy 1993; Stevens 1997) can be applied to
get estimates of population characteristics. Thus, for example,
an estimate of the population total of a response z is given by
OZT D

P
si2R.z.si//=.¼.si//. Stevens (1997) provided exact ex-

pressions for second-order inclusion functions for some special
cases of a GRTS. These expressions can also be used to provide
accurate approximations for the general case. Unfortunately,
the variance estimator based on using these approximations in
the usual Horvitz–Thompson (HT) or Yates–Grundy–Sen (YG;
Yates and Grundy 1953; Sen 1953) estimator tends to be unsta-
ble. The design achieves spatial balance by forcing the pairwise
inclusion probability to approach 0 as the distance between the
points in the pair goes to 0. Even though the pairwise inclu-
sion density is nonzero almost everywhere, any moderate-sized
sample will nevertheless have one or more pairs of points that
are close together, with a correspondinglysmall pairwise inclu-
sion probability. For both the HT and YG variance estimators,
the pairwise inclusion probability appears as a divisor. The cor-
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responding terms in either HT or YG variance estimators will
tend to be large, leading to instability of the variance estimator.

Contrast-based estimators of the form OVCtr. OZT / D
P

i wiy
2
i ,

where yi is a contrast of the form yi D
P

k cikz.sk / withP
k cik D 0, have been discussed by several authors (Yates

1981; Wolter 1985; Overton and Stehman 1993). For an RTS
design, Overton and Stehman also considered a “smoothed”
contrast-based estimator of the form OVSMO. OZT / D

P
i wi.zi ¡

z¤
i /2, where z¤

i , called the smoothed value for data point zi , is
taken as a weighted mean of a point plus its nearest neighbors
in the tessellation.

Stevens and Olsen (2003) proposed a contrast-based esti-
mator for the GRTS design that bears some resemblance to
the Overton and Stehman smoothed estimator. The single con-
trast .zi ¡ z¤

i /2 is replaced with an average of several con-
trasts over a local neighborhood analogous to a tessellation
cell and its nearest neighbors in the RTS design. A heuris-
tic justi� cation for this approach stems from the observation
that the inverse images of the unit-probability intervals on the
line form a random spatial strati� cation of the population do-
main. The GRTS design, conditional on the strati� cation, is
a one-sample-per-stratumspatially strati� ed sample. Recall that
OZT D

P
si2R.z.si//=¼.si//, where z.si/ is a sample from the

ith random stratum. The selections within strata are condition-
ally independent of one another, so that

V . OZT / D
X

si2R

E

µ
V

³
z.si/

¼.si/

­­­strata

´¶
:

The proposed variance estimator approximates E[V ..z.si//=

.¼.si//j strata/] by averaging several contrasts over a local
neighborhoodof each sample point. The estimator is

OVNBH. OZT / D
X

si2R

X

sj 2D.si/

wij

³
z.sj /

¼.sj /
¡

X

sk2D.si/

wik
z.sk/

¼.sk /

´2

;

where D.si/ is a local neighborhood of the si . The weights
wij are chosen to re� ect the behavior of the pairwise inclu-
sion function for GRTS, and are constrained so that

P
i wij DP

j wij D 1. Stimulation studies with a variety of scenarios
have shown the proposed estimator to be stable and nearly unbi-
ased. Applications with real data have consistently shown that
our local neighborhoodvariance estimator produces smaller es-
timates than the Horvitz–Thompson estimator when IRS is as-
sumed to approximate for the joint inclusion probabilities.

4.2 Inverse Sampling

The reverse hierarchical ordering provides the ability to do
inverse sampling, that is, to sample until a given number of
samples are obtained in the target population. The true inclu-
sion probability in this case depends on the spatial con� gura-
tion of the target population,which may be unknown.However,
one can compute an inclusion probability that is conditional on
the achieved sample size in the target population being � xed.
For example, suppose we want M sample points in our do-
main R. We do not know the exact boundaries of R, but are
able to enclose R in a larger set R¤. We select a sample of size
M¤ > M from R¤ using an inclusion density ¼ ¤ scaled so that

Table 2. Domain Area Estimates Using Conditional
Inclusion Probability

Target
sample
size

Mean estimated domain area

Exponential Constant Linear

25 .8000979 .7969819 .8010589
50 .7995775 .7979406 .8005739

100 .7994983 .7980543 .8002237
150 .7994777 .7997587 .7995685

R
R¤ ¼¤.s/ dÁ.s/ D M ¤. The inclusion density for the k-point

reverse hierarchical ordered sample is ¼¤
k .s/ D .k=M¤/¼¤.s/.

Using the inclusion density ¼ ¤
k , the expected number of sam-

ples in R is

Mk D
Z

R

¼¤
k .s/ dÁ.s/ D

Z

R¤
IR.s/¼ ¤

k .s/ dÁ.s/:

We cannot compute Mk because the boundaryof R is unknown,
but an estimate is

OMk D
X

i

IR .si/¼
¤
k .si/

¼¤
k .si/

D
X

i

IR.si/:

We pick Qk so that OMk D M and base inference on ¼¤
Qk . Thus,

for example, an estimate of the unknown extent of R is j ORj DP
i.IR.si//=.¼¤

Qk
.si//.

We illustrate this using the same inaccessibility scenarios as
for the spatial balance simulation. Results are summarized in
Table 2. In each case, the true area of R is .8, so that the esti-
mator using ¼¤

Qk is either unbiased or nearly so.

4.3 Statistical Ef� ciency

As discussed in the Introduction, sampling designs with
some degree of spatial regularity, for example, systematic, grid-
based, or spatially strati� ed designs, tend to be more ef� cient
for sampling natural resources than designs with no spatial
structure. The GRTS design takes the concept of spatial strat-
i� cation, carries it to an extreme, and gives it � exibility and
robustness. The basis for these claims is that for the case of
an equiprobable sample of an areal resource over a continuous,
connected domain, a GRTS sample with size n D 4k is a spa-
tially strati� ed sample with one sample point per stratum. In
this case, the strata are square grid cells with a randomly located
origin. Generally, the ef� ciency of a spatially strati� ed sample
increases as the number of strata increases (samples per stratum
decreases), so maximal ef� ciency is obtained for a one-point-
per-stratum-design. Thus, in this restricted case, the GRTS has
the same ef� ciency as the maximally ef� cient spatial strati� ca-
tion.

The spatial regularity simulation studies provide some in-
sight into less restrictive cases. First, the “no-void” case of
the continuous domain study shows that the spatial regularity
is not seriously degraded for sample sizes that are not powers
of 4, so that even for intermediate sample sizes, the GRTS ef-
� ciency should be close to the ef� ciency of maximal spatial
strati� cation. Second, the “holes” cases show that for irreg-
ularly shaped domains, GRTS maintains spatial regularity. In
this case, GRTS with n D 4k is again a one-point-per-stratum
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design, but the strata are no longer regular polygons.Neverthe-
less, GRTS should have the same ef� ciency as maximal strati-
� cation.

An example of circumstances where ef� ciency is dif� cult
to evaluate is a � nite population study, with variable probabil-
ity and irregular spatial density. In these circumstances, spatial
strata can be very dif� cult to form and, in fact, it may be impos-
sible to form strata with a � xed number of samples per stratum.
A GRTS sample achieves the regularity of a one-sample-per-
stratum strati� cation and so should have the same ef� ciency.

The overwhelming advantage of a GRTS design is not that it
is more ef� cient than spatial strati� cation, but that it can be ap-
plied in a straightforward manner in circumstances where spa-
tial strati� cation is dif� cult. All of the pathologies that occur
in sampling natural populations (poor frame information, inac-
cessibility, variable probability, uneven spatial pattern, missing
data, and panel structures) can be easily accommodated within
the GRTS design.

5. EXAMPLE APPLICATION TO STREAMS

The Indiana Department of Environmental Management
(IDEM) conducts water quality and biological assessments of
the streams and rivers within Indiana. For administrative pur-
poses, the state is divided into nine hydrologicbasins: East Fork
White River Basin, West Fork White River Basin, Upper Illinois
River Basin, Great Miami River Basin, Lower Wabash River
Basin, Patoka River Basin, Upper Wabash River Basin, Great
Lakes Basin, and Ohio River Basin. All basins are assessed
once during a 5-year period; typically, two basins are completed
each year. In 1996, IDEM initiated a monitoring strategy that
used probability survey designs for the selection of sampling
site locations. We collaborated with them on the survey design.
In 1997, a GRTS multidensity design was implemented for the
East Fork White River Basin and the Great Miami River Basin.
In 1999, another GRTS multidensity design was implemented
for the Upper Illinois Basin and the Lower Wabash. These de-
signs will be used to illustrate the application of GRTS survey
designs to a linear network.

The target population for the studies consists of all streams
and rivers with perennially � owing water. A sample frame,
River Reach File Version 3 (RF3), for the target population
is available from the U.S. Environmental Protection Agency
(Horn and Grayman 1993). The RF3 includes attributes that en-
able perennial streams and rivers to be identi� ed, but results in
an overcoverage of the target population due to coding errors.
In addition, Strahler order is available to classify streams and
rivers into relative size categories (Strahler 1957). A headwater
stream is a Strahler � rst-order stream, two � rst-order streams
joining results in a second-order stream, and so on. Approx-
imately, 60% of the stream length in Indiana is � rst order,

Table 3. Sample Frame Stream and River Length by Basin and
Strahler Order Category

Strahler order category length (km)

Basin Total length (km) 1 2 3 C

E Fork White 6802.385 3833.335 2189.494 779.556
Great Miami 2270.018 1501.711 621.039 147.268
L Wabash 7601.418 4632.484 1331.228 1637.706
U Illinois 5606.329 4559.123 500.188 547.018

20% is second order, 10% is third order, and 10% is fourth and
greater (see Table 3). In 1997, IDEM determined that the sam-
ple would be structured so that approximately an equal num-
ber of sites would be in � rst order, second and third order, and
fourth C order for the East Fork White River and the Great Mi-
ami River basins. In 1999, the sample was modi� ed to have an
equal number of sites in � rst, second, third, and fourth C order
categories for the Lower Wabash and Upper Illinois basins.

The GRTS multidensity survey designs were applied. In both
years, six multidensity categories were used (three Strahler or-
der categories in each of two basins). Although four Strahler
order categories were planned in 1999, the stream lengths as-
sociated with the third and fourth C categories were approxi-
mately equal, so a single category that combined the sample
sizes was used. To account for frame errors, landowner denials,
and physically inaccessible stream sites, a 100% oversample
was incorporated in 1999. The intent was to have a minimum
of 38 biological sites with � eld data in 1999; this was not done
in 1997. Table 4 summarizes the number of sites expected and
actually evaluated, as well as the number of nontarget, target,
nonresponse, and sampled sites. Almost all of the nonresponse
sites are due to landowner denial. In 1999, the sites were used
in reverse hierarchical order until the desired number of ac-
tual � eld sample sites was obtained. The biological sites were
a nested subsample of the water chemistry sites and were taken
in reverse hierarchicalorder from the water chemistry sites. Fig-
ures 7–10 show the spatial pattern of the stream networks and
the GRTS sample sites for each of the four basins by Strahler
order categories. Although this is an example of a single real-
izationof a multidensityGRTS design, all realizationswill have
a similar spatial pattern. Prior to statistical analysis, the initial
inclusion densities are adjusted to account for use of oversam-
ple sites by recalculating the inclusion densities by basin.

Indiana determined two summary indices related to the eco-
logical conditionof the streams and rivers: the IBI score, which
is a � sh community index of biological integrity (Karr 1991)
that assesses water quality using resident � sh communities as
a tool for monitoring the biological integrity of streams, and the
QHEI score, which is a habitat index based on the Ohio Envi-
ronmental Protection Agency qualitative habitat evaluation in-
dex (see IDEM 2000 for detailed descriptions of these indices).

Table 4. Survey Design Sample Sizes for Basins Sampled in 1997 and 1999

Expected Evaluated Nontarget Target Nonresponse Water chemistry Biological
Basin sample size sample size sites sites sites sites sites

E Fork White 60 60 5 55 9 35 34
Great Miami 40 40 12 28 5 19 19
L Wabash 128 91 11 80 9 71 39
U Illinois 128 85 8 77 5 72 41
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Figure 7. East Fork White River Basin Sample Sites by Multidensity Categories.
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Figure 8. Great Miami River Basin Sample Sites by Multidensity Categories.
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Figure 9. Upper Illinois River Basin Sample Sites by Multidensity Categories.
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Figure 10. Lower Wabash River Basin Sample Sites by Multidensity Categories.



276 Journal of the American Statistical Association, March 2004

Table 5. Population Estimates With IRS and Local Variance Estimates

Indicator IRS Local Difference
Subpopulation score N sites Mean std. err. std. err. (%)

L Wabash IBI 39 36.1 2.1 1.4 ¡56.8
U Illinois IBI 41 32.5 1.7 1.3 ¡44.8
E Fork White IBI 32 35.1 1.3 1.2 ¡22.3
Great Miami IBI 19 40.8 2.7 2.2 ¡33.5
L Wabash QHEI 39 55.6 2.3 1.6 ¡52.2
U Illinois QHEI 41 43.3 2.1 1.6 ¡39.5
E Fork White QHEI 34 54.3 2.1 1.5 ¡45.9
Great Miami QHEI 19 67.8 2.2 1.9 ¡26.0

Table 5 summarizes the population estimates for IBI and
QHEI scores for each of the four basins. The associated stan-
dard error estimates are based on the Horvitz–Thompson ratio
variance estimator, assuming an independent random sample,
and on the local neighborhoodvariance estimator described in
Section 4.1. On average, the neighborhood variance estimator
is 38% smaller than the IRS variance estimator. Figure 11 il-
lustrates the impact of the variance estimators on con� dence
intervals for cumulative distribution function estimates for the
Lower Wabash Basin.

6. DISCUSSION

There are a number of designs that provide good disper-
sion of sample points over a spatial domain. When we applied
these designs to large-scale environmental sampling programs,
it quickly became apparent that we needed a means (1) to
accommodate variable inclusion probability and (2) to adjust
sample sizes dynamically. These requirements are rooted in
the very fundamentals of environmental management. The � rst
requirement stems from the fact that an environmental re-
source is rarely uniformly important in the objective of the
monitoring: there are always scienti� c, economic, or politi-
cal reasons for sampling some portions of a resource more
intensively than others. Two features of environmental moni-
toring programs drive the second requirement. First, these pro-
grams tend to be long lived, so that even if the objectives of
the program remain unchanged,the “important”subpopulations
change, necessitating a corresponding change in sampling in-
tensity. Second, a high-quality sampling frame is often lack-
ing for environmental resource populations.As far as we know,
there is no other technique for spatial sampling that “balances”
over an intensity metric instead of a Euclidean distance metric
or permits dynamic modi� cation of sample intensity.

Adaptive sampling (Thompson 1992, pp. 261–319) is an-
other way to modify sample intensity. However, there are some
signi� cant differences between GRTS and adaptive sampling in
the way the modi� cation is accomplished. Adaptive sampling
increases the sampling intensity locally depending on the re-
sponse observed at a sample point, whereas the GRTS intensity
change is global.

The GRTS � rst-order inclusion probability (or density) can
be made proportional to an arbitrary positive auxiliary vari-
able, for example, a signal from a remote sensing platform
or a sample intensity that varies by geographical divisions or
known physical characteristics of the target population.In some
point and linear situations, it may be desirable to have the
sample be spatially balanced with respect to geographic space
rather than with respect to the population density. This can be

Figure 11. Stream Network and Sample Site Spatial Patterns by Mul-
tidensity Category for the Lower Wabash Basin (——- CDF estimate;
¡ ¡ ¡ ¡ ¡ 95% local con�dence limits; ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢95% IRS con�dence
limits).

achieved by making the inclusion probability inversely propor-
tional to the population density. Although the development of
GRTS has focused on applications in geographic space, it can
be applied in other spaces. For example,one applicationde� ned
two-dimensionalspace by the � rst two principal componentsof
climate variables and selected a GRTS sample of forest plots in
that space.

The computational burden in hierarchical randomization can
be substantial. However, it needs to be carried out only to a res-
olution suf� cient to obtain no more than one sample point per
subquadrant. The actual point selection can be carried out by
treating the subquadrants as if they are elements of a � nite
population, selecting the M subquadrants to receive sample
points, and then selecting one population element at random
from among the elements contained within the selected sub-
quadrants, according to the probability speci� ed by ¼ .

Reverse hierarchical ordering adds a feature that is im-
mensely popular with � eld practitioners, namely the ability to
“replace” samples that are lost due to being nontarget or inac-
cessible. Moreover, we can replace the samples in such a way
as to achieve good spatial balance over the population that is
actually sampleable, even when sampleability cannot be deter-
mined prior to sample selection.Of course, this feature does not
eliminate the nonresponse or the bias of an inference to the in-
accessible population. It does, however, allow investigators to
obtain the maximum number of samples that their budget will
permit them to analyze.

Reverse hierarchical ordering has other uses as well. One is
to generate interpenetrating subsamples (Mahalanobis 1946).
For example, 10 interpenetrating subsamples from a sample
size of 100 can be obtained simply by taking consecutive sub-
sets of 10 from the reverse hierarchical ordering. Each subset
has the same properties as the complete design. Consecutive
subsets can also be used to de� ne panels of sites for applica-
tion in surveys over time, for example, sampling with partial re-
placement (Patterson 1950; Kish 1987; Urquhart, Overton, and
Birkes 1993).
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APPENDIX A: PROOF OF LEMMA

Lemma. Let f :I2 ! I be a 1–1 quadrant-recursive function and
let s » U.I2/. Then limj±j!0 Efjf .s/ ¡ f .s C ±/jg D 0.

Proof. If, for some n > 0, s and s C ± are in the same subquad-
rant Qn

jk , then f .s/ and f .s C ±/ are in the same interval J n
m , so

that jf .s/ ¡ f .s C ±/j · 1=4n . The probability that s and s C ± are
in the same subquadrant is the same as the probability of the ori-
gin and ± D .±x ; ±y / being in the same cell of a randomly located
grid with cells congruent to Qn

jk . For ±x ; ±y · 1=2n , that probability

is equal to jQn.0/ \ Qn.±/j=jQn.0/j D 1 ¡ 2n.±x C ±y / C 4n±x±y ,
where Qn.x/ denotes a polygon congruent to Qn

jk centered on x.

For D.s; ±/ D jf .s/ ¡ f .s C ±/j, then, we have that P .D · 1=4n/ ¸
1 ¡ 2n.±x C ±y/ C 4n±x±y . Thus, the distribution function FD of D is
bounded below by

FD .u/ ¸

8
><

>:

0; u · 1
4n

1 ¡ 2n.±x C ±y / C 4n±x±y ; u >
1

4n
.

Because D is positive and bounded above by 1,

E[D.±/] D 1 ¡
Z 1

0
FD .u/du

· 1 ¡
»

0

4n
C

³
1 ¡ 1

4n

´
¡ 2n.±x C ±y/ C 4n±x±y

¼
:

For � xed n, we have that

lim
j±j!0

E[D.±/] · 1
4n

;

but this holds for all n, so that

lim
j±j!0

E[D.±/] D 0:

APPENDIX B: PROOF THAT THE PROBABILITY
INCLUSION FUNCTION EQUALS THE

TARGET INTENSITY FUNCTION

We need the measure space .X;B; Á/, where X is the unit inter-
val I D .0; 1] or the unit square I2 D .0; 1] £ .0;1], and the rele-
vant ¾ � elds are B.I/ and B.I2/, the ¾ � elds of the Borel subsets
of I and I2 , respectively. For each of the three types of populations,
we de� ne a measure Á of population size. We use the same symbol
for all three cases, but the speci� cs vary from case to case. For a � -
nite population, we take Á to be counting measure restricted to R, so
that for any subset B 2 B.I2/, Á.B/ is the number of population ele-
ments in B \ R. For linear populations, we take Á.B/ to be the length
of the linear population contained within B . Clearly, Á is nonnega-
tive, countably additive, de� ned for all Borel sets, and Á.?/ D 0, so
Á is a measure. Finally, for areal populations, we take Á.B/ to be the
Lebesgue measure of B \ R.

We begin by randomly translating the image of R in the unit square
by adding independent, U.0; 1=2/ offsets to the xy coordinates. This
random translation plays the same role as random grid location does
in an RTS design; namely, it guarantees that pairwise inclusion prob-
abilities are nonzero. In particular, in this case it ensures that any pair
of points in R has a nonzero chance of being mapped into different
quadrants.

Let ¼.s/ be an inclusion intensity function, that is, a function that
speci� es the target number of samples per unit measure. We assume
that any linear population consists of a � nite number m of smooth,
recti� able curves, R D

Sm
iD1f°i.t / D .xi .t /; yi .t //jt 2 [ai ; bi ]g, with

xi and yi continuous and differentiable on [ai ; bi ]. We set ¼.s/ equal
to the target number of samples per unit length at s, for s 2 L and

equal to zero elsewhere. For example, if the linear population were
a stream network, ¼.s/ would specify the desired number of samples
per kilometer of stream at the point s. Finally, an areal population is
a � nite collection of closed polygons. In this case, ¼.s/ speci� es the
target intensity as number of samples per unit area. Note that for one-
and two-dimensional resources, ¼.s/ could be a continuous, smoothly
varying function. Formally, we require ¼.s/ to be bounded and mea-
surable, strictly positive on R and zero elsewhere, and scaled so that
M D

R
R ¼.s/ dÁ.s/. From these de� nitions of ¼.¢/ and Á.¢/, it follows

that w.B/ D
R

B ¼.s/dÁ.s/ is a measure and that w.B/ is the target
number of samples in B . In particular, M D w.I2/ is the target sample
size. In the following discussion, we assume that M is an integer; the
noninteger case is a simple extension.

Let f .¢/ be a quadrant-recursive function that maps I2 into I. Be-
cause B.I/ can be generated by sets of the form J n

m and B.I2/ can be
generated by sets of the form Qn

j k , both f and f ¡1 are measurable.

Because f is measurable, f ¡1.B/ is measurable for B 2 B.I/, so that
QF .x/ D

R
f ¡1..0;x]/ ¼.s/dÁ.s/ exists. In fact, QF is a distribution func-

tion, that is, nonnegative, increasing, and right continuous. For linear
and areal resources, QF is a continuous, increasing function, but for � -
nite resourcepopulations, QF is a step function with jumps at the images
of populationelements. We can modify QF to obtain continuity in the � -
nite case via linear interpolation, that is, let xi ; i D 1; : : : ; N , be the or-
dered jump points of QF , set x0 D 0; xNC1 D 1, and, for xi < x · xiC1,
set F .x/ D QF .x/ C . QF.xiC1/ ¡ QF.xi //=.xiC1 ¡ xi /.x ¡ xi /. If we set
F D QF for the linear and areal case, then in every cases we have that
F is a continuous distribution function with range .0;M].

In the � nite case, F¡1 is single-valued, so that G.y/ D min.xi j
F ¡1.y/ · xi / is well de� ned. In the linear and areal cases, F ¡1

may not be single-valued. Points that are in the unit square but not
in R lead to � ats in F that correspond to regions in the unit square
with ¼.s/ D 0. However, F¡1.y/ always will be closed and bounded,
so that G.y/ D minfxjx 2 F¡1.y/g is well de� ned. In all cases, the
intensity function ¼ is positive at s D f ¡1.G.y//, that is, there is
a population element at s. Thus, f ¡1 ± G maps .0;M] onto the tar-
get population, that is, f ¡1 ± G associates every point in .0; M] with
a unique element in the population.

It follows that selecting a sample from .0; M] also selects pop-
ulation elements via the mapping f ¡1 ± G. To get a sample with
an inclusion function equal to the target inclusion density, we select
a sample from .0;M] by splitting the range into M unit-length in-
tervals .0;1], .1; 2]; : : : ; .M ¡ 1;M] and picking one point in each
interval. Because of hierarchical randomization,we gain no additional
“randomness” by picking the points independently, so we use system-
atic sampling with a random start and a unit-length selection interval.
The selection procedure de� nes an inclusion probability density func-
tion on .0;M] with a correspondingmeasure PM .¢/. Note that PM co-
incides with Lebesgue measure on .0; M]; in particular, the measure
of a subinterval of .0; M] is its length. We induce a measure P1 on I

via P1.B/ D
R
G¡1.B/ dP M , and in turn induce a measure P2 on I2

via P2.B/ D
R

f ¡1.B/ dP 1. The measure P2 is an inclusion probability

measure on I2 , and P2.B/ D w.B/, so the sample selection method
does give an inclusion probability function equal to the target sample
intensity function.

[Received August 2002. Revised September 2003.]
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